On the Formation of Clusters in Secondary Ion Mass Spectrometry of Molecular Solids

Jose Marien† and Edwin De Pauw*

Institut de Chimie, B.6, Université de Liège, Sart-Tilman par B/4000 Liège 1, Belgium

Water strongly promotes the formation of ion clusters containing several undamaged methanol molecules during the sputtering of water-methanol layers condensed on titania at 120 °K.

Very large ion clusters have been observed in secondary ion mass spectrometry (SIMS) not only for elementary solids (metals¹ and rare gases²) but also for ionic (halides³) and molecular compounds (H₂O, ⁴ NO, ⁵ CO⁵). We report here the observation by SIMS of new positive and negative ion clusters during Ar+ bombardment of H₂O, MeOH, and H₂O-MeOH condensed from the gas phase onto TiO₂ kept at 120 K.

Up to now, only positive ion clusters of H_2O have been observed.⁴ We have now detected negative ion clusters such as $OH^-(H_2O)_n$, n=0—5, by SIMS. However they can only be

detected when the physisorbed water film is still conducting and thus only a few layers thick. They are not observed for an ice insulating film.⁶

For neat methanol, ion clusters have previously been observed by field desorption mass spectrometry (FDMS). We have now observed an intense series of methanol ion clusters $H^+(MeOH)_m$, m=1-17 (Figure 1). Additional series of less intense peaks are also present in the spectra. They are representative of the ions $H^+(H_2O)(MeOH)_m$, $HCO^+(MeOH)_m$, $CH_3O^+(MeOH)_m$, $CH_3^+(MeOH)_m$, and $CH^+(MeOH)_m$. The

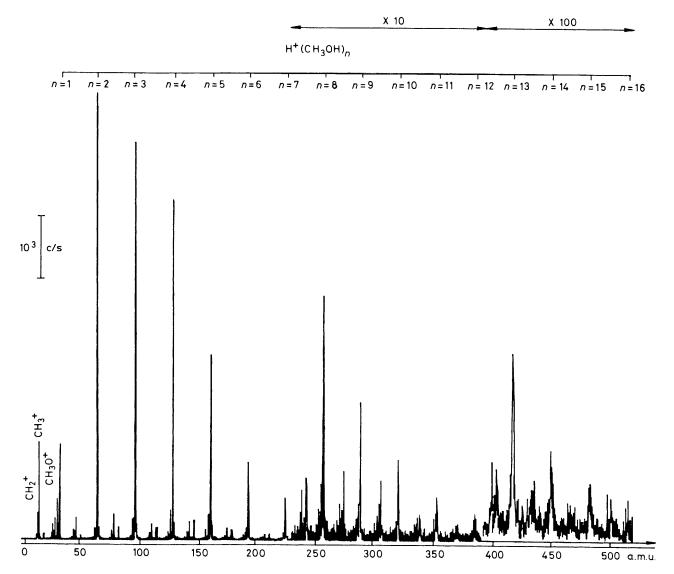


Figure 1. Positive SIMS spectrum of MeOH on TiO₂ at 120 K, Ar⁺ 0.8 keV.

[†] Research associate of the National Fund for Scientific Research (Belgium).

two latter series could also be produced by ethanol impurities. The CH₃⁺(MeOH) peak has also been observed by Röllgen.⁷

Minute amounts of methanol in water (1:2000) produce intense signals for mixed clusters besides the H_2O and MeOH clusters with the following decreasing intensities $H^+(H_2O)_n > H^+(H_2O)_n (MeOH)_m > H^+(MeOH)_m$.

Increasing the amount of methanol (1:200) gives an intensity sequence $H^+(H_2O)_n(MeOH)_m > H^+(MeOH)_m > H^+(H_2O)_n$. At a water: MeOH ratio of 1:1, the sequence becomes $H^+(MeOH)_m \ge H^+(H_2O)_n(MeOH)_m > H^+(H_2O)_n$.

The high intensity of methanol-containing clusters may be tentatively explained by equations (1) and (2)8.

$$2(H_2O) \xrightarrow{Ar^+} H_3O^+ + OH^-$$
 (1)

$${
m H_3O^+ + MeOH
ightarrow {
m `H_2O} + H^+(MeOH) + 11~kcal \atop mol^{-1} \ddag }$$
 (2)

The protonated methanol is then solvated before ejection out of the condensed phase. The ion intensities observed here differ from those characteristic of ion-molecule reactions in the gas phase.⁸ In addition, they are insensitive to pressure variations above the cold sample throughout the range 10^{-8} to 5×10^{-6} Torr. These results lend much support to an interpretation of the spectra in terms of ion-molecule reactions in the condensed phase.

A mixture of Me¹⁶OH-H₂¹⁸O (1:200) shows no incorpora-

1 kcal = 4.18 kJ.

tion of ¹⁸O in methanol clusters which provides strong support for a direct ejection mechanism.

Thus we can conclude that (i) not only protons but also ionic fragments (MeO⁺, HCO⁺, OH⁻, CH⁺₃) can form stable ion clusters, as has been seen previously for inorganic salts⁹ and (ii) water is a proton donor and therefore promotes the ion yield of the intact ejected molecular species.

In summary, water is a convenient promoting agent for SIMS molecular analysis of H-bond-forming molecules.

Received, 13th May 1982; Com. 534

References

- 1 K. D. Klöppel and G. von Bünau, Int. J. Mass Spectrom. Ion Phys., 1981, 39, 85.
- 2 R. G. Orch, H. T. Jonkman, D. H. Powell, and J. Michl, J. Am. Chem. Soc., 1981, 103, 6026.
- 3 T. M. Barlak, J. R. Wyatt, R. J. Colton, J. J. Decorpo, and J. E. Campana, *J. Am. Chem. Soc.*, 1982, **104**, 1212.
- 4 G. M. Lancaster, F. Honda, Y. Fukuda, and J. W. Rabalais, J. Am. Chem. Soc., 1979, 101, 1951.
- 5 H. T. Jonkman and J. Michl, J. Am. Chem. Soc., 1981, 103, 733.
- 6 E. De Pauw and J. Marien, J. Phys. Chem., 1981, 85, 3550.
- 7 H. H. Gierlich and F. W. Röllgen, Int. J. Mass Spectrom. Ion Phys., 1979, 29, 125.
- 8 P. Kebarle, R. N. Haynes, and J. C. Collins, J. Am. Chem. Soc., 1967, 89, 5753.
- E. De Pauw and J. Marien, Int. J. Mass Spectrom. Ion Phys., 1981, 38, 11.